\\ DIALYBRID

CONFIDENTIAL

NDIALYBRID

Revolutionizing the World of Grafts

Pitch Deck January 2023

1. Introduction

- 2. Target Market
- 3. Timeline and Funding Needs
- 4. Achievements to Date
- 5. Team

Snapshot on Dialybrid

Project Overview

- Dialybrid[®] is an innovative research project related to the development of a new biomaterial for cardiovascular grafts
- The proprietary material, called Silkothane[®], is composed of a natural degradable material (silk fibroin) and a nondegradable synthetic material (polyurethane)
- The key characteristics of Dialybrid®'s solution are: (i) biocompatibility, (ii) elasticity and stability, (iii) off-the-shelf availability, (iv) tuneability of mechanical properties and (v) resistance to infections
- The identified <u>first application</u> is to use the Silkothane[®] to develop an arteriovenous graft, which is used in <u>dialysis</u> to connect an artery to a vein

Silkothane® Key Characteristics

Characteristics	Description		
Biocompatible	Feature derived from the silk fibroin material		
Elastic and Stable	Feature derived from the polyurethane		
Ready to use	Available off the shelf		
Tunable	Possibility of matching the mechanical properties to final application		
Resistant to infections	Unlike traditional grafts		

2345

Dialybrid Graft Key Applications

NDIALYBRID

Limits of currently available solutions

Issue	Description			
Material	Synthetic grafts generally feature poor biocompatibility, with consequent thromboses or chronic inflammation			
Performances	Synthetic grafts fail in vessels with diameter < 6mm (e.g. coronary arteries), where native vessels (e.g. saphenous vein or mammary artery) need to be used			
	In peripheral applications (e.g. PAD and hemodialysis), synthetic grafts fail due to poor patency and high infection rates, with burdensome maintenance costs			
Availability	Native grafts (e.g. saphenous vein) are not always available and their withdrawal causes donor site morbidity			
Compliance mismatch	Synthetic grafts are too rigid to fit the mechanical properties of native tissues and the compliance mismatch causes graft failure (e.g. patency loss)			

1. Introduction

2. Target Market

- 3. Timeline and Funding Needs
- 4. Achievements to Date
- 5. Team

Dialybrid Target Market includes peripheral and coronary diseases MDIALYBRID

	Dialysis Vascular Access	PAD	CAD
Application	Dialysis	Peripheral revascularization	Coronary (or cardiac) revascularization
Current treatment	Synthetic arteriovenous graftsFistulaeCVC	 Synthetic grafts (GoreTex, Dacron) Angioplasty and stenting 	 CABG (Coronary Artery Bypass Grafting) with native vessels Percutaneous coronary intervention (PCI) Angioplasty and stenting
Dialybrid offer	Arteriovenous graft ("AV graft")	Hybrid peripheral (stent) graft	Coronary (stent) graft
Global Market Value (2025E)	\$1.2bn	\$3.1bn	\$7.9bn

Dialybrid plans to initially target the +\$600m EU and US dialysis vascular access market, which accounts for c.50% of the global market

7

Why Dialysis first? Currently available alternatives of dialysis vascular accesses fail in approximately 40-50% of the cases within 1 year, due to the formation of aneurisms, thrombi, or infective complications **Clear market** Need These failures have a tremendous impact on the quality of life of dialytic patients and are extremely burdensome in terms of costs associated to vascular access maintenance (estimated to be \$2.8bn in US in 2013)⁽¹⁾ Dialysis is a lower-risk market compared to others (e.g., coronary stents) since dialytic Lower risk patients are regularly monitored by physicians 3 times per week, and possible compared to 2 unforeseen events (e.g., thromboses) pose lower-impact complications (i.e., ischemia alternative markets of the hand, rather than cerebral or cardiac ischemias) Lower As a consequence of the lower risk, clinical studies in the dialysis field are less investments 3 expensive than in other fields needed **Dialysis requires the graft to be punctured**. As a consequence, the graft needs to be Viable as test able to support significant stress bed for further

applications

 For this reason, a graft used to perform dialysis is most likely to be viable for other less-stressful applications as well

Dialybrid's first application – Dialybrid's AV graft – will be a test-bed for future applications

NDIALYBRID

Dialysis Vascular Accesses Current Solutions & Market Value M DIALYBRID

Product	# of EU-US yearly units ⁽²⁾	EU-US Market Value ⁽²⁾	Description	Dialybrid Advantage	
Synthetic Arteriovenous grafts	72,000	\$181m	Synthetic or tissue engineered protheses placed between a vein and an artery to create an "artificial" connection	 Lower incidence of occlusion and inflammatory issues Target price at Dialybrid in line with synthetic market standard (Acuseal) 	
Mass Vein Contervent	184,000	\$313m	Direct surgical connections created between an artery and a vein, without any inorganic medical device	 Immediately accessible Same target complication rate since it adapts to body thanks to biocompatibility and remodelling 	
evec	385,000	\$116m	CVC is adopted only in certain rare cases when urgent hemodialysis is needed. It is discouraged by guidelines	 Long term usability Lower target risk of infections 	
	Total	\$610m	Current alternatives failure rate is equal to c.40% within the first year		

Source: Company information; Note (1): Desai - Two-Year Outcomes of Early Cannulation Arteriovenous Grafts for End-Stage Renal Disease; Note (2): refers to 2025

9

1 2 3 4 5

PRIVATE & CONFIDENTIAL

	Fistulae	Synthetic Arteriovenous grafts	CVC	Dialybrid
Long-term patency	\checkmark	×	×	\checkmark
Remodelling/integration	~	×	×	~
Resistance to infections	~	×	×	~
Availability	×	~	~	~
Early cannulation	×	~	~	~
Comfort for patients	~	~	×	~

Dialybrid is superior to alternatives along all dimensions considered

- 1. Introduction
- 2. Target Market
- **3.** Timeline and Funding Needs
- 4. Achievements to Date
- 5. Team

Timeline for Marketability of Dialybrid AV Graft

NDIALYBRID

Funding Need for AV Graft Solution

12

Parallel Opportunities

N DIALYBRID

Dialybrid can capitalize on the pre-industrialization & preclinical phases of the AV graft saving time & expenditures to develop other products

Total Funding Need

NDIALYBRID

14

Dialybrid Ownership Structure

NDIALYBRID

- 1. Introduction
- 2. Target Market
- 3. Timeline and Funding Needs

4. Achievements to Date

5. Team

Dialybrid had important contacts with the FDA

NDIALYBRID

Interaction	Sending date	Feedback date	Main topics	FDA Feedback
Pre-Submission (main)	Mar 29 th , 2021	Jun 9 th , 2021	 Acuseal as predicate device? Preclinical validation strategy (biocompatibility, animal study) Clinical validation strategy Suitability of 510(k) 	 There is no predicate device Need to repeat the animal study in GLP, need of assessing biostability Too early to discuss clinical strategy 510(k) not a suitable route
Supplement 1	Jul 27 th , 2021	Oct 7 th , 2021	 Design of GLP animal study Design of a biostability study Design of biocompatibility studies Suitability of de novo 510(k) 	 OK 12 animals for the GLP study Pre-approval of biostability study, requests on biostability of polyurethane OK on Biological Evaluation Plan De novo 510(k) not a suitable route
Supplement 2	Sep 3 rd , 2021	Nov 9 th , 2021	 Application for designation for Breakthrough Device Program (special "fast track" of FDA for breakthrough technologies) 	 Application rejected due to the absence of clinical evidences of success Suggestion to collect preliminary clinical data (e.g., feasibility study on 10 subjects with 6 months follow up)
Supplement 3	Nov 22 nd , 2021	Feb 4 th , 2022	 GLP animal study protocol Design of a biostability study on polyurethane Non-clinical testing strategy table 	 GLP study draft protocol approved Suggestions on how to improve the evaluation of the biostability of polyurethane (ISO 10993-13) Suggestions on the preclinical tests

Dialybrid is conducting the next pre-clinical phase

N DIALYBRID

	Previo anima	us proof-of-concept al study (@ UNIMI)	Future (@ Me	Future GLP animal study (@ Medanex, Belgium)	
Animal model	9 adult sheep, carotid-jugular arteriovenous shunt (deep)) carotid-jugular a	12 adult sheep, carotid-jugular arteriovenous shunt (subcutis)	
Time-points	1 mont	MID-TERM th, 2 months, 3 months (N=3 per group)	1 month (LONG-TERM 1 month, 6 months, 12 months (N=4 per group)	
Certification	NONE		GLP (Go	GLP (Good Laboratory Practice) ISO10993	
Study endpoints	Graft patency	100% patency rate @ 3 months	Graft patency	To be evaluated via histo- pathology and echography	
	Graft remodeling	Endothelization @ 3 months	Graft remodeling	Evaluated via histopathology and SEM analysis	
	Graft puncturability	Not assessed	Graft puncturability	Assessed immediately after surgery & every 2 weeks	

- 1. Introduction
- 2. Target Market
- 3. Timeline and Funding Needs
- 4. Achievements to Date
- 5. Team

Team

N DIALYBRID

Francesco Giovanni Greco – CEO

- Mr Greco is an experienced medical devices entrepreneur, expert in bringing products from the lab to the market. He is a pioneer of medical engineering and co-inventor of around 20 patents
- Mr Greco holds a degree in Biomedical engineering

Stefania Adele Riboldi – Project Coordinator

- Mrs Riboldi is an expert in biomaterials and tissue engineering, management and coordination of research projects. She published more than 10 scientific papers and holds 2 patented applications
- She holds a PhD in Bioengineering

Alice Caldiroli – Product Development Engineer

- Mrs Caldiroli carried out her master's thesis work at Bioengineering Laboratories, focusing on the industrialization and validation of SAG
- She earned a MSc in Bioengineering at Politecnico di Milano

Cristina Oldani – Trainee, PhD candidate

- Mrs Oldani carried out her master's thesis at IIT in Genova, focusing on the degradative behavior of fibroin
- She earned a MSc in Bioengineering at Politecnico di Milano and she is currently a PhD student there

Teresa De Nadai – Project Manager LIFTT

- Mrs De Nadai is a neuroscientist of with a PhD in neurobiology
- She worked in the pharma industry for 4 years, as a coordinator of stability studies
- She is Project Manager at LIFTT since 2020, reference person of Dialybrid since its foundation

23

Consultants

NDIALYBRID

Matteo Tozzi - Vascular Surgeon

 Associate professor of vascular surgery and Director of the Research Center for the Study and Application of New Technologies in Vascular Surgery at the University of Insubria

Franco Galli - Nephrologist

- Former Medical Director and Head of Vascular Access Surgery for Hemodialysis at the Division of Nephrology and Dialysis of the S. Maugeri Foundation in Pavia
- Consultant for medical device manufactures

Fabio Acocella – Veterinary Surgeon

- Associate Professor of Veterinary Surgery at Università degli Studi di Milano
- Study Director of SAG's first animal study
- Expert in animal models & study design in the fields of regenerative medicine, tissue engineering and gene therapy

Luciano Carbonari – Vascular Surgeon

- Head of the Vascular Surgery Unit at Ospedali Riuniti of Ancona
- Responsible for the regional center for vascular access in the Marche Region and collaborator of the study group of the Italian Society of Nephrology